Detecting end-effectors on 2.5D data using geometric deformable models: Application to human pose estimation
نویسندگان
چکیده
End-effectors are usually related to the location of limbs, and their reliable detection enables robust body tracking as well as accurate pose estimation. Recent innovation in depth cameras has re-stated the pose estimation problem. We focus on the information provided by these sensors, for which we borrow the name 2.5D data from the Graphics community. In this paper we propose a human pose estimation algorithm based on topological propagation. Geometric Deformable Models are used to carry out such propagation, implemented according to the Narrow Band Level Set approach. A variant of the latter method is proposed, including a density restriction which helps preserving the topological properties of the object under analysis. Principal end-effectors are extracted from a directed graph weighted with geodesic distances, also providing a skeletal-like structure describing human pose. An evaluation against reference methods is performed with promising results. The proposed solution allows a frame-wise end-effector detection, with no temporal tracking involved, which may be generalized to the tracking of other objects
منابع مشابه
A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملShape Models of the Human Body for Distributed Inference
of “Shape Models of the Human Body for Distributed Inference” by Silvia Zuffi, Ph.D., Brown University, May 2015 In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can b...
متن کاملImplicit models for automatic pose estimation in static images
Automatic human pose estimation is one of the major topics in computer vision. This is a challenging problem, with applications to gaming, human computer interaction, markerless motion capture, video analysis, action and gesture recognition. This thesis addresses the problem of automatically estimating the two dimensional articulated pose of a human in static range images. Implicit models of po...
متن کاملClass-Specific Object Pose Estimation and Reconstruction Using 3D Part Geometry
We propose a novel approach for detecting and reconstructing classspecific objects from 2D images. Reconstruction and detection, despite major advances, are still wanting in performance. Hence, approaches that try to solve them jointly, so that one can be used to resolve the ambiguities of the other, especially while employing data-driven class-specific learning, are increasingly popular. In th...
متن کاملFPM: Fine Pose Parts-Based Model with 3D CAD Models
We introduce a novel approach to the problem of localizing objects in an image and estimating their fine-pose. Given exact CAD models, and a few real training images with aligned models, we propose to leverage the geometric information from CAD models and appearance information from real images to learn a model that can accurately estimate fine pose in real images. Specifically, we propose FPM,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 117 شماره
صفحات -
تاریخ انتشار 2013